The dual-basin landscape in GFP folding.
نویسندگان
چکیده
Recent experimental studies suggest that the mature GFP has an unconventional landscape composed of an early folding event with a typical funneled landscape, followed by a very slow search and rearrangement step into the locked, active chromophore-containing structure. As we have shown previously, the substantial difference in time scales is what generates the observed hysteresis in thermodynamic folding. The interconversion between locked and the soft folding structures at intermediate denaturant concentrations is so slow that it is not observed under the typical experimental observation time. Simulations of a coarse-grained model were used to describe the fast folding event as well as identify native-like intermediates on energy landscapes enroute to the fluorescent native fold. Interestingly, these simulations reveal structural features of the slow dynamic transition to chromophore activation. Experimental evidence presented here shows that the trapped, native-like intermediate has structural heterogeneity in residues previously linked to chromophore formation. We propose that the final step of GFP folding is a "locking" mechanism leading to chromophore formation and high stability. The combination of previous experimental work and current simulation work is explained in the context of a dual-basin folding mechanism described above.
منابع مشابه
Basin Hopping Graph: a computational framework to characterize RNA folding landscapes
MOTIVATION RNA folding is a complicated kinetic process. The minimum free energy structure provides only a static view of the most stable conformational state of the system. It is insufficient to give detailed insights into the dynamic behavior of RNAs. A sufficiently sophisticated analysis of the folding free energy landscape, however, can provide the relevant information. RESULTS We introdu...
متن کاملRelationship between protein folding thermodynamics and the energy landscape.
The origin of protein folding thermodynamics is examined in terms of the energy landscape, employing an off-lattice protein model with scaled non-native attractions, which is continuously tunable between a Go-like model and a highly frustrated system. Extensive statistical temperature molecular dynamics simulations, combined with inherent structure analysis, reveal the intimate connection betwe...
متن کاملFrom structure to function: the convergence of structure based models and co-evolutionary information.
Understanding protein folding and function is one of the most important problems in biological research. Energy landscape theory and the folding funnel concept have provided a framework to investigate the mechanisms associated to these processes. Since protein energy landscapes are in most cases minimally frustrated, structure based models (SMBs) have successfully determined the geometrical fea...
متن کاملDenaturant-dependent folding of GFP.
We use molecular simulations using a coarse-grained model to map the folding landscape of Green Fluorescent Protein (GFP), which is extensively used as a marker in cell biology and biotechnology. Thermal and Guanidinium chloride (GdmCl) induced unfolding of a variant of GFP, without the chromophore, occurs in an apparent two-state manner. The calculated midpoint of the equilibrium folding in Gd...
متن کاملHierarchical folding free energy landscape of HP35 revealed by most probable path clustering.
Adopting extensive molecular dynamics simulations of villin headpiece protein (HP35) by Shaw and co-workers, a detailed theoretical analysis of the folding of HP35 is presented. The approach is based on the recently proposed most probable path algorithm which identifies the metastable states of the system, combined with dynamical coring of these states in order to obtain a consistent Markov sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 34 شماره
صفحات -
تاریخ انتشار 2008